Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering.
نویسندگان
چکیده
Chitosan-beta glycerophosphate-hydroxyethyl cellulose (CH-GP-HEC) is a biocompatible and biodegradable scaffold exhibiting a sol-gel transition at 37°C. Chondrogenic factors or mesenchymal stem cells (MSCs) can be included in the CH-GP-HEC, and injected into the site of injury to fill the cartilage tissue defects with minimal invasion and pain. The possible impact of the injectable CH-GP-HEC on the viability of the encapsulated MSCs was assessed by propidium iodide-fluorescein diacetate staining. Proliferation of the human and rat MSCs was also determined by MTS assay on days 0, 7, 14 and 28 after encapsulation. To investigate the potential application of CH-GP-HEC as a drug delivery device, the in vitro release profile of insulin was quantified by QuantiPro-BCA™ protein assay. Chondrogenic differentiation capacity of the encapsulated human MSCs (hMSCs) was also determined after induction of differentiation with transforming growth factor β3. MSCs have very good survival and proliferative rates within CH-GP-HEC hydrogel during the 28-day investigation. A sustained release of insulin occurred over 8 days. The CH-GP-HEC hydrogel also provided suitable conditions for chondrogenic differentiation of the encapsulated hMSCs. In conclusion, the high potential of CH-GP-HEC as an injectable hydrogel for cartilage tissue engineering is emphasised.
منابع مشابه
Preparation and in vitro evaluation of a novel chitosan-based hydrogel for injectable delivery of enrofloxacin
BACKGROUND: The development of injectable sustained-release products are of great interest to veterinary pharmaceuticals and animal health business. Recently, great attention has been paid to in situ gel-forming chitosan/beta-glycerophosphate (chitosan/β-GP) solutions due to their good biodegradability and thermosensitivity. OBJECTIVES: The general aim of this study was to prepare a novel in si...
متن کاملPoly(N-isopropylacrylamide-co-N-tert-butylacrylamide)- grafted hyaluronan as an injectable and self-assembling scaffold for cartilage tissue engineering
Novel poly(N-isopropylacrylamide-co-N-tert-butylacrylamide)-grafted hyaluronan [P(NIPAAm-co-NtBAAm)g-HA] has been developed as a modified derivative to improve phase-transition characteristics of PNIPAAmg-HA, which has a lower critical solution temperature (LCST) of approximately 32 ̊C. This promising selfassembling biomaterial has potential as an injectable scaffold for in situ cartilage tissue...
متن کاملA composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration
Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desira...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell biology international
دوره 38 1 شماره
صفحات -
تاریخ انتشار 2014